
GigaScience

Refgenie: a reference genome resource manager
--Manuscript Draft--

Manuscript Number: GIGA-D-19-00289R2

Full Title: Refgenie: a reference genome resource manager

Article Type: Technical Note

Funding Information: National Institute of General Medical
Sciences
(1R35GM128636-01)

Dr. Nathan C. Sheffield

Abstract: Reference genome assemblies are essential for high-throughput sequencing analysis
projects. Typically, genome assemblies are stored on disk alongside related resources;
for example, many sequence aligners require the assembly to be indexed. The
resulting indexes are broadly applicable for downstream analysis, so it makes sense to
share them. However, there is no simple tool to do this. To this end, we introduce
refgenie, a reference genome assembly asset manager. Refgenie makes it easier to
organize, retrieve, and share genome analysis resources. In addition to genome
indexes, refgenie can manage any files related to reference genomes, including
sequences and annotation files. Refgenie includes a command-line interface and a
server application that provides a RESTful API, so it is useful for both tool development
and analysis. Availability: https://refgenie.databio.org

Corresponding Author: Nathan C. Sheffield

UNITED STATES

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author: Michał Stolarczyk

First Author Secondary Information:

Order of Authors: Michał Stolarczyk

Vincent Reuter

Jason P. Smith

Neal Magee

Nathan C. Sheffield

Order of Authors Secondary Information:

Response to Reviewers: Dear Hans,

Thanks for the positive response. We've now made all the requested changes
suggested by reviewer 3. To respond to the question about building assets, we've put
together more detailed documentation now here:
http://refgenie.databio.org/en/latest/build/

We are considering ways to do the suggestion on cryptography, as suggested. I also
found another similar tool ("genomepy") and added it to the tool comparison section. I
added the GigaDB link as requested, and also reformatted the availability and
requirements section as requested.

-Nathan

Additional Information:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

No

If not, please give reasons for any
omissions below.

 as follow-up to "Experimental design
and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

"

No experiments performed.

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources

organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

RESEARCH ARTICLE
Refgenie: a reference genome resource manager
Michał Stolarczyk1, *, Vincent P. Reuter1, *, Jason P. Smith1,4, Neal E. Magee5, and Nathan C. Sheffield1,2,3,4,�

1Center for Public Health Genomics, University of Virginia
2Department of Public Health Sciences, University of Virginia
3Department of Biomedical Engineering, University of Virginia
4Department of Biochemistry and Molecular Genetics, University of Virginia
5Research Computing, University of Virginia
*Contributed equally
� Correspondence: nsheffield@virginia.edu

Reference genome assemblies are essential for high-throughput sequencing analysis
projects. Typically, genome assemblies are stored on disk alongside related resources;
for example, many sequence aligners require the assembly to be indexed. The result-
ing indexes are broadly applicable for downstream analysis, so it makes sense to share
them. However, there is no simple tool to do this. To this end, we introduce refgenie,
a reference genome assembly asset manager. Refgenie makes it easier to organize, re-
trieve, and share genome analysis resources. In addition to genome indexes, refgenie
can manage any files related to reference genomes, including sequences and annotation
files. Refgenie includes a command-line interface and a server application that provides
a RESTful API, so it is useful for both tool development and analysis.
Availability: https://refgenie.databio.org

Background
Enormous effort goes into assembling and curating ref-
erence genomes1–5. These reference assemblies provide
a common representation for comparing results and they
form the basis for a wide range of downstream tools for
sequence alignment and annotation. Many tools that
rely on reference assemblies will produce independent
resources that accompany an assembly. For instance,
many aligners must hash the genome, creating indexes
that are used to improve alignment performance6–9.

Analytical pipelines typically rely on these aligners and
their indexes for the initial steps of a data analysis.
These assembly resources are typically shared among
many pipelines, so it’s common for a research group to
organize them in a central folder to prevent duplication.
In addition to saving disk space, centralization simplifies
sharing software that uses a reference assembly because
software can be written around a standard folder
structure. However, this does not solve the problem
of sharing genomic resources between research groups.
Because each group may use a different strategy to
identify shared genome resources, sharing tools across
groups may require modifying them.

One solution to this problem is to have a web-accessible
server where standard, organized reference assemblies
are available for download. Indeed, this is exactly the
goal of Illumina’s iGenomes project, which provides “a
collection of reference sequences and annotation files
for commonly analyzed organisms”10. The iGenomes

project has become a popular source of genome assets
and has greatly simplified sharing analysis tools among
research environments. However, this approach suffers
from some fundamental drawbacks and leaves several
challenges unsolved. First, the individual assets can only
be downloaded in bulk, but what if a particular use case
requires only a small subset of resources in a package?
More important, building the resources is not scripted,
so if the repository excludes a reference or resource of
interest, there is no programmatic way to fill the gap.
In these scenarios, users must manually build and orga-
nize genome assets individually, forfeiting the strength
of standardization among groups.

To improve the ability to share interoperable reference
genome assets, we have developed refgenie, which en-
ables a more modular, customizable, and user-controlled
approach to managing reference assembly resources.
Like iGenomes, refgenie standardizes reference genome
asset organization so software can be built around that
organization. But unlike iGenomes, refgenie also auto-
mates the building of genome assets, so that an identical
representation can be produced for any genome assem-
bly. Furthermore, refgenie allows programmatic access
to individual resources both remote and local, making
it suitable for the next generation of self-contained
pipelines.

Refgenie can organize any files that can be assigned to
a particular reference genome assembly, which could in-
clude not only genome indexes, but other resource types

1· Refgenie, a reference genome manager · Databio · c©The Authors

Manuscript Click here to access/download;Manuscript;manuscript.pdf

Click here to view linked References

mailto:nsheffield@virginia.edu
https://refgenie.databio.org
https://www.editorialmanager.com/giga/download.aspx?id=86947&guid=064cebdc-223f-4159-896a-dc302a941ce7&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=86947&guid=064cebdc-223f-4159-896a-dc302a941ce7&scheme=1
https://www.editorialmanager.com/giga/viewRCResults.aspx?pdf=1&docID=3040&rev=2&fileID=86947&msid=27049c38-6304-4d25-9716-874148c2c131

serve

genome
assets

archived
assets

FASTA
file

build archive

web API

pull

server tasks
CLI tasks

FASTA
file

refgenie
CLI

refgenie
server

Refgenconf

imports imports

user interface

software interface

A B
Components

Fig. 1: Refgenie concept and software organization. A: Refgenie provides the ability to either build or pull assets. B: Refgenie is
tripartite, made up of a conf utility, a command-line interface (CLI), and a server package. The configuration package is intended
for programmatic use, and is used by the CLI and server packages. Users and software use refgenie via the CLI or server (web API).

like genome sequences and annotations11–13.

Refgenie manages genome-related resources flexibly. It
can handle any asset type, from annotations to indexes.
It provides individual, pre-built asset downloads from a
server and allows scripted building for custom inputs.
Refgenie thus solves a major hurdle in biological data
analysis.

Results and discussion
Refgenie is the first full-service reference genome asset
manager. Refgenie provides two ways to obtain genome
assets: pull, and build (Fig.1A). For common assets,
pulling a pre-built version obviates the need to install
and run specialized software to build a particular asset.
It also makes it easier to satisfy prerequisites program-
matically for pipelines and other software. However,
remote-hosted assets are only practical for common
genomes and assets, so for uncommon assets or on
unconnected computers, users may instead build assets,
which creates the same standard output for custom
genomes. By providing both build and pull, refgenie
facilitates asset organization both within and between
research groups, increasing interoperability of tools that
rely on genome resources.

Asset organization

Refgenie uses a local YAML file called the genome config-
uration file (Fig. 4) to keep track of metadata, such as
local file paths. In this file, refgenie stores paths to in-
dividual genome assembly resources, or assets, each of
which represents one or more files. You can think of a
genome asset as a folder of related files tied to a particu-
lar genome assembly. For example, an asset could be an
index for a particular tool, or a group of annotation files.
Refgenie assets are referred to using asset registry paths,

which are human-readable asset identifiers. The registry
path follows the structure {genome}/{asset}:{tag}; a
genome thus operates as a sort of namespace for a set of
assets, which are identified both by asset names as well
as tags, allowing refgenie to manage multiple versions
of the same asset.

The refgenie software suite allows users to interact
with assets with three components: 1) a command-line
interface (CLI), 2) a server, and 3) a configuration
package that supports them both (Fig.1B).

Refgenie command-line interface

The workhorse of refgenie is the command-line interface
(CLI); it is how users will typically interact with genome
assets. Its implementation as a command-line tool not
only makes it useful for general purpose exploration
and access, but also allows it to be integrated into
existing workflows that require access to genome assets
from the shell. The CLI can be installed with pip

install refgenie and invoked by calling refgenie.
The refgenie CLI provides 7 functions for interacting
with local genome assets:

• refgenie init – initializes an empty genome con-
figuration file

• refgenie list – summarizes the genome configu-
ration file, listing local genomes and assets

• refgenie seek – provides the file path to a given
asset

• refgenie add – adds an already-built local asset
• refgenie remove – removes a local asset
• refgenie tag – adds a tag to a local asset
• refgenie build – builds a new asset

2· Refgenie, a reference genome manager · Databio · c©The Authors

0:57

asset name
archive

sizegenome
asset
size

build
time

peak
memory

bowtie2_index hg38
hg38
hg38
hg38
hg38

hg38_cdna
hg38_cdna

hisat2_index
bismark_bt1_index
bismark_bt2_index
bwa_index

kallisto_index
salmon_index

3.5
3.9
7.5
7.5
3.2

1.6
2.6

3.9
4.2

13.6
13.6

2.9

2.2
3.1

0:36
1:10
2:17
0:51

0:04
0:03

5.6
5.5

10.8
10.8

4.7

3.8
5.3

fasta hg38 2.9 0.8 0:01 <0.1

hg38star_index 24.326.9 1:51 35.8

hg38dbnsfp 22.822.9 2:35 *<0.1
hg38ensembl_rb <0.1<0.1 0:00 <0.1
hg38ensembl_gtf <0.1<0.1 0:00 <0.1
hg38gencode_gtf <0.1<0.1 0:00 <0.1
hg38feat_annotation <0.1<0.1 0:01 0.1
hg38refgene_anno <0.1<0.1 0:00 0.2

Fig.2: Assets available for build. Table listing assets that can currently be built with refgenie build, along with statistics for
size, build time, and memory high water mark. Assets were built for the human genome using a single core. Times (in H:MM) and
memory/disk (in gigabytes) are representative values from a single run. These assets are produced by various tools8,9,14–17 and are
available to be built for any arbitrary genome input. * peak disk space usage for dbnsfp is over 300GB

Initializing refgenie

All of the CLI commands require knowledge of the ref-
genie configuration file, which is passed via the -c argu-
ment. To install and configure refgenie requires only a
few lines of code:

pip install --user refgenie

export REFGENIE="refgenie.yaml"

refgenie init -c $REFGENIE

In this example, we populate the $REFGENIE environ-
ment variable, which eliminates the need to pass -c to
each command going forward. The init, list, add,
and remove functions are relatively straightforward and
simply allow a user to create, view, and manipulate the
genome configuration file.

Building assets

The build function allows a user to build assets for
any arbitrary inputs, which is what enables refgenie to
serve custom genomes. Refgenie has built-in capability
to build a selection of different common genome assets
(Fig.2). The list of assets with available recipes are
listed by the refgenie list command. Available assets
are built by specifying the asset registry path along with
any required inputs. For example:

refgenie build hg38/ASSET \

--INPUT FILE

Where ASSET is a unique key defining the asset of in-
terest (e.g., bowtie2 index), INPUT is an identifier for a
required input, and FILE is a path to the provided in-
put. For example, to build a fasta asset requires a com-
pressed fasta file as input. It can thus be built like this:

refgenie build hg38/fasta \

--fasta hg38.fa.gz

Building an asset can require either input arguments,
such as in this example, or it can require other assets.
The list of requirements for building an asset can be
found by adding the -r argument to the build function.
Assets are built with locally available versions of the
software (e.g. bowtie2-build to create the Bowtie2 in-
dex) or alternatively with containerized software (using
-d/--docker flag in the refgenie build command).
We have also produced a complete containerized com-
puting environment capable of building all available
refgenie assets, which can be deployed with the bulker
environment manager18, making it easy to build any
refgenie assets without installing the required tools
natively.

Pulling assets

In addition to functions on local assets, the refgenie CLI
also contains additional commands that can interact
with remote assets: pull and listr:

• refgenie listr – lists available remote genomes
and assets

• refgenie pull – downloads a remote asset

With these commands, refgenie downloads a standard
asset with a single line of code:

refgenie pull hg38/ASSET

Tagging assets

The tag command allows users to tag assets with
unique identifiers. Tags may also be provided when
building or pulling assets to specify a version (e.g. build
hg38/ASSET:TAG). Once tagged, specific versions of

3· Refgenie, a reference genome manager · Databio · c©The Authors

assets can be accessed by tag. If no tag is specified,
refgenie will use the tag default, which is automatically
given to any built or pulled assets that do not specify
a tag. This makes tags an optional feature of refgenie
which are only necessary if a user desires multiple
versions of the same asset.

Seeking assets

Once the asset has been added to refgenie either via
pulling or building, the user can retrieve the path to it
with refgenie seek:

refgenie seek hg38/ASSET

This command returns the file path to the specified
asset for the specified genome. The seek command is
portable, eliminating the need to hard-code paths or
pass them as arguments. Consequently, in a pipeline or
other software that requires access to genome assembly
assets, the path to the local bowtie2 index asset can be
retrieved with a shell command:

bowtie2_index_path=\

$(refgenie seek hg38/bowtie2_index)

Refgenie server

The listr and pull functions require that the CLI in-
teract with a server. The CLI uses a configurable URL to
retrieve a remote archived tarball. After retrieving the
tarball, the CLI will unpack it into the appropriate folder
location and update the configuration file to provide ac-
cess to its path via refgenie seek.

To support this remote function, we have developed a
containerized, portable, open-source companion appli-
cation called refgenieserver. Many users of refgenie
will not have to be aware of the server application; how-
ever, interested users can use refgenie server to host
their own genome asset server. For example, a tool de-
veloper may wish to simplify use by hosting indexes for
common reference assemblies.

Running the refgenie server is simple for users who are
already familiar with refgenie. It reads the same genome
configuration file format as the CLI. In fact, refgenie
server operates on the same genome configuration file
and asset folders that that refgenie itself builds or down-
loads. The server software comes with an archive com-
mand that prepares a refgenie genome folder for serv-
ing. It compresses each asset into an individual tarball.
This simple system makes it easy for users to run a server
using their refgenie assets.

This server software leverages cutting-edge web technol-
ogy to provide high-concurrency service with minimal
compute resources (Fig. 3). We built refgenie server on
top of the FastAPI Python framework, which is a high

API Framework

ASGI Server

Refgenie
assets

Refgenie server
software

User interface

Fig.3: Server software stack. Archived refgenie assets are
mounted into a Docker container, along with the refgenie server
software, which is built using FastAPI and uvicorn. The container
can then be accessed via the web and API user interfaces.

genome_folder: /genomes/path
genome_server: http://...
config_version: 0.3
genomes:
 hg38:
 assets:
 bowtie2_index:
 asset_description: ...
 default_tag: default
 tags:
 default:
 asset_path: bowtie2_index
 asset_digest: 0f9217d44264ae2188
 seek_keys:
 bowtie2_index: .

Fig.4: Genome configuration file. Refgenie reads and writes a
genome configuration file in YAML format to keep track of avail-
able local assets.

performance web framework for building APIs. FastAPI
automatically produces an API that complies with Ope-
nAPI 3.0 standards, which will allow other tools to dis-
cover and automatically use the API. It also includes a
self-documenting test interface so that users can see and
test the available API endpoints. Refgenie leverages the
Starlette development toolkit and the uvicorn server to
make use of the high-performance Asynchronous Server
Gateway Interface (ASGI) specification, which provides
asynchronous access to refgenie server.

Refgenie server is containerized and available on dock-
erhub, so that an interested user could run a server with
a single line of code:

docker run --rm -p 80:80 \

-v genomes_folder:/genomes rgimage \

refgenie -c /genomes/config.yaml serve

By mounting a refgenie ‘genomes’ folder into this con-
tainer, users get a fully functioning web interface and
RESTful API.

4· Refgenie, a reference genome manager · Databio · c©The Authors

Refgenconf package for genome configuration

Refgenie organizes assets by genome in the configura-
tion file, which is both computer-readable and human-
readable. In practice, users will not need to interact
with this file at all, as refgenie will handle both reading
and writing the file. However, users may edit the file if
they need a more complicated structure (such as storing
assets on different file systems, or adding assets manu-
ally). Together with the refgenie software, this simple
file makes the concept of reference genome assets com-
pletely portable. Full documentation for the configura-
tion file format can be found at refgenie.databio.org.

The configuration package, refgenconf, simply pro-
vides functions and data types to read and write items
listed in the genome configuration file. Under the hood,
the refgenie CLI itself uses refgenconf to interact with
the genome configuration and assets on disk. The
server software also relies on it to read, archive, and
serve assets. The refgenconf package also provides the
starting point for any third-party Python developers by
providing a fully functional Python application program-
ming interface (API) for interacting with refgenie assets.
For example, we use refgenconf in Python pipelines
we develop to make them aware of the genome assets
available in a given computing environment. Using this
approach, a pipeline need only be provided with an
assembly key, like ‘hg38’, and it can use refgenconf

to locate the correct path to any genome-related asset
necessary for the pipeline. This simplifies the process of
configuring pipelines and allows refgenie to be used
both by humans and computers.

The Refgenomes database

We designed the server software so that anyone could
easily run a custom server instance. We have also
deployed our own instance of refgenieserver at re-
fgenomes.databio.org, where we host pre-built genome
assets. Like any instance of refgenieserver, our
refgenomes database provides both a web interface and
a RESTful API to access individual assets we have made
available. Users may explore and download archived
indexes from the web interface or develop tools that
programmatically query the API.

The web interface provides a graphical listing of avail-
able genomes and assets, allowing users to browse the
site and download individual assets manually. In addi-
tion, refgenieserver provides API endpoints to serve lists
of available genomes and assets, as well as metadata
for the individual assets, including unique digests for
file integrity, file sizes, and archive content informa-
tion. Furthermore, the server provides endpoints to
download each asset individually. Endpoints include
the following: /genomes retrieves a list of available
genomes; /assets retrieves a list of all available assets;
/{genome}/assets/ retrieves a list of assets for a given

genome; and /{genome}/assets/{asset}/archive
retrieves the tarball for the specified asset. Complete
documentation is available at refgenomes.databio.org.
Because it provides a standard OpenAPI-compliant
RESTful API, our server will be useful not just for our
refgenie CLI, but for other tools that would benefit
from automated access to reference assembly assets and
indexes.

Our refgenieserver instance runs within DC/OS as a
containerized application. The server application makes
genome assets available through a web application con-
nected directly to a remote filesystem, with no addi-
tional database or infrastructure requirements. Integra-
tion and deployment is automated using GitHub, Travis-
CI, Docker Hub, and a custom deployment technique
made simple in DC/OS. Changes committed in code are
generally deployed to development or production ser-
vices within 1-3 minutes.

Genome provenance

One challenge with genome assembly assets is name
mismatches that lead to analysis conflicts. Because
refgenie identifiers are human-readable and user-
controlled, refgenie cannot rely on them to uniquely
identify assets. Furthermore, refgenie assets may be
either built or pulled from different servers, exacerbat-
ing the issue. This is an active area of research, with
several approaches under development related to this
problem, such as the NCBI Assembly database4, the
refget protocol for sequence identifiers19, and tximeta
checksums for RNA-seq data20. Refgenie currently
provides two resources to confirm the identity of pulled
and built assets: First, a unique digest for each asset,
and second, a building log file. Refgenie makes unique
asset digests available via both web interface and API,
allowing users to distinguish between two assets with
the same names but different digests. Furthermore,
because building refgenie assets is scripted, it is possible
to trace any asset back to its inputs. Refgenie server
provides API points to retrieve either the raw recipe
(/v2/asset/{genome}/{asset}/recipe) or the actual
log file (/v2/asset/{genome}/{asset}/log) for any
asset available on the server. For built assets, the build

command automatically produces a log file that records
the input files, software versions, and final digests for
any locally built assets. These resources make it possible
for users to uniquely identify and trace the provenance
of assets they either build or pull.

Comparison to existing tools
A few existing tools approach these problems as well.
The most similar projects are Illumina’s iGenomes and
Galaxy Data Managers accompanied by Galaxy Tool
Shed21,22, both of which offer only a small part of what
refgenie does (Fig. 5). iGenomes provides a single

5· Refgenie, a reference genome manager · Databio · c©The Authors

https://refgenie.databio.org
http://refgenomes.databio.org
http://refgenomes.databio.org
http://refgenomes.databio.org

cu
st

om
 g

en
o

m
es

R
E

S
T

fu
l A

P
I f

or
 a

ss
e

ts

w
eb

 in
te

rf
ac

e
to

do
w

nl
o

ad
 a

ss
et

s
 pr

og
ra

m
m

at
ic

 A
P

I

co
nt

ai
ne

ri
ze

d
se

rv
er

 s
of

tw
ar

e

m
od

ul
ar

 a
cc

es
s

to

in
di

vi
d

ua
la

ss
et

s

co
m

m
a

nd
-li

ne
 in

te
rf

ac
e

an
d

as
se

t m
an

ag
er

iGenomes

Refgenie

Data managers *

po
rt

ab
le

 c
om

m
an

d-
lin

e
ac

ce
ss

 to
 a

ss
et

 p
at

hs

genomepy

Fig.5: Feature comparison. iGenomes, Galaxy Data managers,
and genomepy solve some problems of standardized reference
genome assets, but lack the interactive features of refgenie. *Data
managers assets can be accessed individually, but not outside of
the Galaxy UI.

archive download of a standardized folder structure
with pre-built assets for pre-defined genomes. The Data
Managers facilitate building of assets, they are tightly
coupled to the larger galaxy infrastructure, while Refge-
nie’s modular design allows for simple implementation
in diverse environments. The genomepy tool provides
a unified command-line interface and python API to
download genome sequences from multiple sources,
but does not accommodate custom genomes and has no
remote API or component for downloading indexes23.
Some of refgenie’s utility is also satisfied by individual
tool websites that provide individual asset downloads
(e.g. bowtie2 indexes), but these provide no shared
structure or unified interface for access.

Refgenie provides a full-service manager that unifies and
transcends all of these available tools. Refgenie solves a
series of related problems all in one convenient package.
It provides a unified web interface for all assets, plus
programmatic access to modular individual assets via
a RESTful API for metadata and assets. Refgenie also
provides the ability to build assets for custom genomes
with a uniform interface that integrates seamlessly with
downloaded assets. Refgenie is unique in providing a
local asset manager that makes locating assets portable,
simplifying building pipelines that use these assets.
It is also the only easily deployable, independent,
containerized server application and Python API for
reference genome assets. Thus, no existing software can
solve these problems specific to genome-related data
resources.

Conclusions and future directions
Reference genomes, indexes, annotations, and other
genome assets are integral to sequencing analysis
projects, and these genome-associated data resources

are growing rapidly11. Refgenie provides a full-service
management system that includes a convenient method
for downloading, building, sharing, and using these
resources. Refgenieserver is among a growing number
of API-oriented projects in the life sciences5,24,25. Ref-
genie will simplify management of reference assembly
assets for users and groups, facilitating data sharing and
software interoperability26.

Several new features under development will make ref-
genie even more useful. Currently, refgenie is completely
flexible with respect to genomes, but it is less flexible
with respect to assets, as only pre-scripted assets can be
built. A more flexible approach would allow refgenie to
accept custom recipes, allowing users to add new asset
types. Future development will address the challenges of
sharing recipes, provenance, and trust for flexible assets.
We are also improving the way refgenie records and uses
identifiers and relationships among assets. For instance,
by recording more detailed information about what an
asset contains and how it was generated, we open the
possibility of delineating more fine-grained compatibil-
ities. For instance, while two indexes would only be
compatible if derived from the same set of sequences,
two annotation files could be compatible on different se-
quences that shared a coordinate structure. Finally, we
anticipate that future development will extend refgenie
to be able to accommodate ontology annotation for as-
sets and genomes. Together, these improvements will
enable more robust discovery of assets and genomes as
well as the relationships among them.

Availability and requirements
Project name: Refgenie
Project home page: http://refgenie.databio.org
Operating system: Platform independent
Programming language: Python
Other requirements: Varies by use case
License: BSD-2
RRID: SCR 017574
biotools ID: Refgenie

An archival copy of the code is available via the Giga-
Science database GigaDB27.

References
1. Harrow, J. et al. GENCODE: The reference human genome annota-
tion for the ENCODE project. Genome Research 22, 1760–1774 (2012).

2. Pruitt, K. D., Tatusova, T., Brown, G. R. & Maglott, D. R. NCBI ref-
erence sequences (RefSeq): Current status, new features and genome
annotation policy. Nucleic Acids Research 40, D130–D135 (2011).

3. Church, D. M. et al. Modernizing reference genome assemblies.
PLoS Biology 9, e1001091 (2011).

4. Kitts, P. A. et al. Assembly: A resource for assembled genomes at
NCBI. Nucleic Acids Research 44, D73–D80 (2015).

5. Ruffier, M. et al. Ensembl core software resources: Storage and pro-
grammatic access for DNA sequence and genome annotation. Database
2017, (2017).

6· Refgenie, a reference genome manager · Databio · c©The Authors

http://refgenie.databio.org

6. Sadakane, K. & Shibuya, T. Indexing huge genome sequences for
solving various problems. Genome Informatics 12, 175–183 (2001).

7. Hon, W.-K., Sadakane, K. & Sung, W.-K. Breaking a time-and-space
barrier in constructing full-text indices. SIAM Journal on Computing
38, 2162–2178 (2009).

8. Li, H. & Durbin, R. Fast and accurate short read alignment with
burrows-wheeler transform. Bioinformatics 25, 1754–60 (2009).

9. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with
bowtie 2. Nat. Methods 9, 357–359 (2012).

10. Illumina. IGenomes. Ready-to-use reference sequences and anno-
tations. support.illumina.com (2019).

11. Richa Agarwala et al. Database resources of the national center for
biotechnology information. Nucleic Acids Research 46, D8–D13 (2018).

12. Zerbino, D. R., Wilder, S. P., Johnson, N., Juettemann, T. & Flicek,
P. R. The Ensembl Regulatory Build. Genome Biology 16, (2015).

13. Sheffield, N. C. & Bock, C. LOLA: Enrichment analysis for genomic
region sets and regulatory elements in R and bioconductor. Bioinfor-
matics 32, 587–589 (2016).

14. Krueger, F. & Andrews, S. R. Bismark: A flexible aligner and methy-
lation caller for bisulfite-seq applications. Bioinformatics 27, 1571–
1572 (2011).

15. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal
probabilistic RNA-seq quantification. Nature Biotechnology 34, 525–
527 (2016).

16. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced
aligner with low memory requirements. Nature Methods 12, 357–360
(2015).

17. Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioin-
formatics 29, 15–21 (2012).

18. Sheffield, N. C. Bulker: A multi-container environment manager.
OSF Preprints (2019). doi:10.31219/osf.io/natsj

19. GA4GH. Refget - reference sequence retrieval implementation.
samtools.github.io/ (2019).

20. Love, M. I. et al. Tximeta: Reference sequence check-
sums for provenance identification in RNA-seq. bioRxiv (2019).
doi:10.1101/777888

21. Blankenberg, D., Johnson, J. E., Taylor, J. & Nekrutenko, A. Wran-
gling galaxy’s reference data. Bioinformatics 30, 1917–1919 (2014).

22. Blankenberg, D. et al. Dissemination of scientific software with
galaxy ToolShed. Genome Biology 15, 403 (2014).

23. Heeringen, S. J. van. Genomepy: Download genomes the easy
way. The Journal of Open Source Software 2, 320 (2017).

24. Yates, A. et al. The ensembl REST API: Ensembl data for any
language. Bioinformatics 31, 143–145 (2014).

25. Tarkowska, A. et al. Eleven quick tips to build a usable REST API
for life sciences. PLOS Computational Biology 14, e1006542 (2018).

26. Wilkinson, M. D. et al. The FAIR guiding principles for scientific
data management and stewardship. Sci. Data 3, 160018 (2016).

27. Stolarczyk, M., Reuter, V. P., Smith, J. P., Magee, N. E. & Sheffield,
N. C. Supporting data for ”refgenie: A reference genome resource man-
ager”. GigaScience Database (2019). doi:10.5524/100670

7· Refgenie, a reference genome manager · Databio · c©The Authors

https://doi.org/10.31219/osf.io/natsj
https://doi.org/10.1101/777888
https://doi.org/10.5524/100670

